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Abstract. The projective space of a complex Hilbert space %’ is considered both as a 
Kahler manifold and as the set of pure states of the von Neumann algebra a(%’). A link 
is given between these two structures. Special attention is devoted to topology, orientation 
and automorphisms of the structures and Wigner’s theorem. 

1. Introduction 

The set of pure states of ordinary quantum mechanics is the projective space P(X) 
of the Hilbert space &p associated to the system. It is known that P(2) can be given 
a natural Kahlerian structure (see e.g. Cirelli and Lanzavecchia 1981), from which 
the Schrodinger equation follows in a standard way. Now, pure states of ordinary 
quantum mechanics can be viewed either as normal pure states of the von Neumann 
algebra .%(%e) of bounded operators on X or as pure states of the C*-algebra U(%’) 
of compact operators on &p. 

Recently, Shultz (1980, 1982) has showed that the set of pure states of a C*- 
algebra, as a uniform space equipped with transition probabilities and orientation, is 
a dual object for C*-algebras, and determines the C*-algebra up to *-isomorphisms. 
In Shultz’s approach no differential structure is considered (only the trivial case of 
finite-dimensional C*- algebras is mentioned); however, the interplay between 
differential geometrical and algebraic structures in the infinite-dimensional case seems 
to be quite interesting for foundations of quantum theories. 

In this paper, we start this study with the simplest case of the duality between 
P(2) and von Neumann algebra B((X). In this duality P(X) corresponds to the 
boundary of the state space of U(%), and therefore inherits part of the affine structure 
of this convex set. With a slight abuse of language we refer to this structure as the 
affine structure of P(X). 

In 0 2 we briefly introduce the differential structure of P(Z) and show that the 
underlying topology coincides with the (relativised) w *- topology. 

Section 3 is devoted to the study of Shultz’s notion of orientation; we interpret 
orientation from the geometrical point of view, introducing the important notion of 
conjugation for P(X). 

In 0 4 we consider the energy function (related to the usual Schrodinger equation) 
and obtain it naturally from the algebraic duality relation between P(2) and a(%?). 
@ 1983 The Institute of Physics 3829 
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The last section is devoted to the bijection between the automorphism group of 
W (X) and the group of Kahler isomorphisms of P(X). A new formulation of Wigner's 
theorem is obtained. 

2. The topology on the projective space 

The projective space P(X) of a complex Hilbert space X admits a natural structure 
of Kahler manifold (with Kahler metric X). This structure is fully described in 
Cirelli and Lanzavecchia (1981), and here we want only to define it in a quicker way, 
without the use of local coordinates. 

We denote by [ h ]  the subspace of X generated by h E X - ( 0 ) ;  define 

Vh:={[k]EP(z), ( h  I k ) # O } ,  (1) 

(Ph vh {h }', (Ph([k] ) :=(hlk) - '  * k -h .  (2) 

The collection {( V h ,  (Ph, {h}')} ( h  EX) is a holomorphic atlas d for P(X9). d gives 
to P(X) a natural topology Tx. 

Identifying every [ h ]  E P(X) with the corresponding one-dimensional projection, 
P(X) becomes the boundary of the positive part of the unit ball of the Banach space 
Y%' (X)  of trace class operators. It becomes therefore both the set of pure states of 
V(X) and the set of normal pure states of 9 ( X ) .  We now show that TX coincides 
with the relativised w *- topology on P(X). 

To do that, we have just to establish two facts: 
(i) the maps (Ph (h  E X) are w *-continuous; 
(ii) the maps (CE%'(%)) are TX continuous, where e: P(%)+C, 

( P )  :=Tr( PC). 
The statement (ii) may be replaced by 

Actually, though the weak topology induced by the maps e with C of finite rank 
does not coincide with the w*-topology on the whole T%'(X), it does on the unit ball 
(see Stritili and Zsid6 1979, lemma 1.2), and therefore on P(X). 

Let h, k €2 ,  llhII=llkll= 1, [ k ] ~  vh, and let P, Q be the corresponding 
projections. As P ( Q )  = l(h/k)I2 f 0, a trivial computation gives 

(ii') the maps p ( P  E P(X)) are TX continuous. 

and therefore 

F(a) = (1 +ll(Ph([k1)11*)-' .  (4) 

From (3) we see that the norm of (Ph is w*-continuous, and therefore q h  is continuous 
in [ A ] ,  as q h ( [ h ] )  = 0. Since (Pk is continuous in [ k ] ,  (Ph = (qh 0 ( P i ' )  0 (Pk and qh 0 V i '  
is a biholomorphism, the continuity of (Ph in [ k ]  follows, and (i) is proved. From (4) 
we see that P' is TX continuous on v h .  As its extension to the whole P(X)(given by 
P ( Q )  = 0 if [ k ] g  V h )  is 9-x continuous too, we have proved (ii'). 

We can therefore conclude with the following: 

Theorem 1 .  The topology on P(X) underlying its Kahler structure equals the w*- 
topology. 
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3. Geometrical interpretation of affine orientation 

In this section we exploit the link established by theorem 1 between the Kahlerian 
and affine structures on P(X). We recall the notion of orientation for pure states of 
a C*-algebra A given in Shultz (1980, 1982), only specialising it to our case, where 
A is %‘(X). This notion admits a very simple characterisation in terms of the holo- 
morphic atlas d. 

We denote by X ( h ,  k )  the subspace of X generated by h, k E X-{O}. The face 
of the state space of %(Z) generated by [h] ,  [k] is affinely isomorphic to the unit ball 
E 3  in R3, and its boundary S 2 ( [ h ] ,  [ k ] )  is homeomorphic to S 2 .  The boundary of the 
face generated by [ h ] ,  [ k ]  is in fact the one-dimensional complex manifold P(X(h ,  k)), 
which is isomorphic to the complex projective space !?(e2). This one, considered as 
a real manifold, is exactly the sphere S 2  with the canonical atlas. Moreover, there is 
a homeomorphism E :S2 + P(M2(@)), where P(M2(C)) is the set of pure states of the 
C*-algebra of 2 x 2 complex matrices. In the same way, if we consider P(X(h ,  k)) 
as a real manifold, we obtain S 2 ( [ h ] ,  [k]). 

Let Ei : S 2  + S 2 ( [ h ] ,  [ k ] ) ,  i = 1, 2, be bijections which preserve transition prob- 
abilities. Then 25’ 0 El preserves transition probabilities, and extends uniquely to 
an orthogonal transformation of R3; we say El and E2 are equivalent if this transforma- 
tion has determinant +1, and we refer to an equivalence class as an orientation of 

Let P h k  be the projection on X ( h , k ) .  The C*-algebra A =Phk%(%!)Phk is *- 
isomorphic to M2(C) ,  and its set of pure states is S 2 ( [ h ] ,  [ k ] ) .  Given a *-isomorphism 
@ : A  +M2(C)  we have a homeomorphism @* : P(M2(C)) + S 2 ( [ h ] ,  [ k ] ) .  The orienta- 
tion of S 2 ( [ h ] ,  [ k ] )  given by @* 0 E does not depend on @, and is called the canonical 
orientation. The collection of the canonical orientations of every S 2 ( [ h ] ,  [ k ] )  is the 
canonical orientation of P(X). More generally, an orientation of P(X) is a continuous 
assignment of an orientation on each S 2 ( [ h ] ,  [ k ] ) ,  that is, a continuous section of a 
suitable &-bundle (see Alfsen et a1 1980). P(X) can be given just the canonical 
orientation and the opposite one. 

When one deals with geometrical and affine structure together, orientation becomes 
a misleading term; for this reason we call Shultz’s orientation affine orientation. To 
connect affine orientation to differential geometry we make a short digression on 
geometrical orientation, with special regard to complex manifolds; we refer essentially 
to Flaherty (1976). 

An m-dimensional complex manifold M with a holomorphic atlas d adniits 
canonically a structure of real manifold, induced by a real atlas d”, which is oriented. 
On the set M can be defined another complex atlas 8, which is the conjugate of a?, 
and gives to M the conjugate differential structure. d is called the antiholomorphic 
atlas for M. If m is even, the atlases a? and 8 induce the same geometrical orientation 
on the real manifold M. If m is odd (this is the case of P(C2)=S2) the two atlases 
induce opposite geometrical orientations. 

This geometrical notion of orientation is obviously linked to the finite dimension 
of M. We cannot therefore define such an orientation on P(X). The notion of affine 
orientation does not correspond to the geometrical notion; we will see that affine 
orientation corresponds to conjugation. 

Let h, k E X - ( 0 ) .  The restrictions of (Ph, (Pk to v h  n P ( X ( h ,  k ) ) ,  Vk n P ( X ( h ,  k ) )  
are a holomorphic atlas a?hk on P(X(h ,  k ) ) .  This atlas induces an oriented atlas on 
the real underlying manifold S?[h I, [ k ] ) ,  and therefore gives a geometrical orientation 

S2([hIt [kl). 
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on it; thus, the holomorphic atlas d on P(X) induces a geometrical orientation on 
each S2([h] ,  [ k ] ) .  The opposite geometrical orientation on S 2 ( [ h ] ,  [ k ] )  is the one 
induced by the antiholomorphic atlas on P(X(h ,  k ) ) .  The collection of all the opposite 
orientations is therefore induced by the antiholomorphic atlas d on P(X). 

Let 2 be the Hilbert space complex conjugate of %'. The set P(%) is the set of 
normal pure states of 3 (%), and equals P(X). We remark that 93 (2) coincides with 
the opposite von Neumann algebra a(%') of a(%'). If we construct the holomorphic 
atlas d(%) on P(%) (that is, the atlas which is obtained starting with 2 instead of X) 
we obtain the antiholomorphic aCas for P(X), which is now conveniently denoted by 
d(%). We have 

( 5 )  

The atlas 9p(%) induces on each S 2 ( [ h ] ,  [ k ] )  a geometrical orientation. The opposite 
one, which is induced by the atlas d(%), can therefore be considered as the orientation 
induced by the atlas 

We now define the notion of conjugation for P(X); then we will show that 
conjugation is the same thing as affine orientation. Consider the atlas on P(X) obtained 
by the union of d(%, and dEji(%). This atlas is not holomorphic, and its charts can be 
divided into two equivalence classes, requiring the functions (Ph ocp;' to be holomor- 
phic. We say that such an equivalence class is a conjugation for P(X). The canonical 
conjugation is the one induced by the atlas d(~.,. By ( 5 ) ,  the opposite conjugation is 
the canonical one for P(%). Conjugation therefore allows us to distinguish if we are 
dealing with the set P(%) = P(%) as the set of normal pure states of (X) or of 93 (2). 
These algebras have the same spaces of normal pure states, the same structure of 
Jordan algebras but not the same C*- algebraic structure. 

To discuss the relation between conjugation and affine orientation for P(X), let 
us consider again a S 2 ( [ h ] ,  [ k ] ) ,  and two transition probabilities preserving bijections 
Ei : S 2 + S 2 ( [ h ] ,  [ k ] ) ,  i = 1, 2. If El and E2 are equivalent, then E2 0 E;' is a bijection 
which preserves geometrical orientation. Actually, given a chart (V, y )  of the real 
oriented complete atlas d;f induced by d h k ,  then (El 0 32*(V) ,  y 0 E2 0 3;') 
belongs to dFf, that is the Jacobian determinant of y 0 ( y  0 S2 0 ZT1)-' is positive. 
If we start with two inequivalent transition probabilities preserving bijections, we 
obtain a bijection which reverses geometrical orientation, since the determinant of 
a2 oE1 equals -1. 

Therefore, on each S z ( [ h ] ,  [ k ] ) ,  affine orientation coincides with geometrical 
orientation, since each equivalence class of transition probabilities preserving bijec- 
tions corresponds to one of the geometrical orientations of the real manifold S2([h] ,  
[ k ] ) .  Moreover, the choice of a conjugation for P(X) induces a geometrical orientation 
(and therefore an affine orientation) on each S2([h] ,  [ k ] ) ;  we now show that the 
canonical conjugation and the canonical affine orientation for P(X) induce the same 
geometrical orientation (exactly the one given by d h k )  on each S 2 ( [ h ] ,  [ k ] ) .  

When we defined the atlas d h k  on P(%'(h, k ) )  we used the atlas d on P(X). 
Another way to introdu_ce d h k  is to consider any isomorphism r : X ( h ,  k )  -+ C2. From 
r we obtain a bijection r: P(%'(h, k 1) + P(C2) which can be used to carry on P ( X ( h ,  k ) )  
the canonical holomorphic atlas of P(C2). The resulting oriented atlas is equivalent 
to d h k .  From we can also obtain a *-isomorphism @,-:A + M 2 ( C ) ,  where A is the 
C*-algebra of linear operators on X ( h ,  k ) ,  that is the above defined algebra 
P h k % ( % f ) P h k .  It is now immediate that 4; 0 E: S2=P(cCz)-,S2([h], [ ~ I ) - P ( x ( ~ ,  k ) )  
is exactly f-' (for the form of S we again address the reader to Shultz (1980), where 

(WX), d(,J = P(%), 4%)). 

on P(%). 

--1 
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Z is denoted by 4) .  This means that 4; 0 E induces on S 2 ( [ h ] ,  [ k ] )  the geometrical 
orientation given by d h k .  If we start with the algebra a ( X ) = w ( % ) ,  the isomorphism 
T :  %(/I, k ) +  @* induces on P(%(h, k)) the atlas d h k  and therefore the opposite 
geometrical and affine orientation. 

Since the collection of affine orientations on each S 2 ( [ h ] ,  [ k ] )  induced by a 
conjugation results in an affine orientation for P(X), we have the following: 

Theorem 2. The canonical (resp. opposite) conjugation for P( X) corresponds exactly 
to the canonical (resp. opposite) affine orientation for P(X), 

In our mind, conjugation for P(X) is defined in a simpler way than affine orientation 
for P(X); moreover, it points directly towards the reason for which affine orientation 
has been introduced, that is to have an object which allows us to distinguish between 
the sets P(X) and P(%), and therefore between the two opposite algebras 9 (X) and 
9 (2). 

4. Energy function on P(X) 

The Kahler manifold P(X) has a canonical symplectic sructure. This allows us to 
associate to each (real) smooth function on P(X) a (real) vector field on P(X), that 
is an ordinary differential equation. Therefore, given a function (which we interpret 
as energy function of the physical system) we obtain in a natural way the motion 
equation (see Cirelli and Lanzavecchia 1981). This equation is equivalent to the usual 
Schrodinger equation (and is therefore physically correct) if the energy function is 

R H ( [ + ] ) =  ((/IlH4) * (414)-', 4 E X-{O) ,  (6 )  
where H is a self-adjoint operator (the Hamiltonian operator) on X. For the moment 
we assume H to be bounded. The self-adjointness of H is a necessary and sufficient 
condition for RH to be real. 

The form of the energy function (6) ,  which was postulated in Cirelli and Lanzavec- 
chia (1981), comes naturally from the duality relation between T%'(X) and 9 (X): 
considering again P(X) 5 .T%(X), we can associate to each H E  W(X),, (self-adjoint 
part of 9 (X)) a function fi : P(X) + R, a ( P )  = Tr( PHI. Of course, fi( PI,]) = R H ( [ $ ] ) ,  
where P[Gj is the projection on [$I. The energy of a pure state [4] is therefore the 
value on it of the linear functional associated to the Hamiltonian operator of the system. 

Unbounded Hamiltonian operators can be treated with certain limit processes. 
We do not discuss this point here (see Cirelli and Lanzavecchia 1982). 

5. Automorphism group of W (X), Kahler isomorphisms and Wigner's theorem 

The automorphism group Aut (9 (2)) of W (X) coincides with the group 42 (E) /  - , 
where a(%) is the group of unitary operators on X, and - is the equivalence relation 
defined by U - U'++ 3a E R: U = exp(ia)U'. 

Now we want to characterise the set of diffeomorphisms of P(X) which leave 
invariant the Kahler structure. For brevity, we simply discuss the group of automorph- 
isms. This characterisation parallels closely that of symplectic diff eomorphisms 
(canonical transformations) in classical mechanics. A symplectic diff eomorphism of 
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the phase space of classical mechanics is a diffeomorphism which preserves the 
canonical symplectic two-form w. A symplectic chart is a chart such that the local 
expression of w is the standard symplectic form of the local model space R2". The 
symplectic form on P(%) comes from the Kahler metric X; it is therefore natural to 
consider Kahler isomorphisms, that is, those diffeomorphisms which preserve the 
Kahler metric. 

The case of the projective space P(X) parallels closely the case of the n-dimensional 
projective space I!?(@"+') (for the properties of P(Cn+*) see Chern (1979)). Actually, 
as in the finite-dimensional case, the standard Kahler metric on the local model space 
is the projection of the metric given by the scalar product of X. A chart such that 
the local expression of YE is the standard one is said to be Kahlerian. The atlas d 
defined in 8 2 is therefore Kahlerian (i.e. it consists of Kahlerian charts), while the 
atlas d is not, since the local expression of X is the conjugate of the standard one; 
we call such an atlas anti-Kahlerian. 

Kahler isomorphisms are equivalently characterised as those diff eomorphisms 
which bring Kahlerian charts in Kahlerian charts, that is, which do not affect the 
standard local expression of X. As in the case of P(@"+'), the invariance group of Yt 
is %(X)/ - . Actually, a unitary operator U brings Kahlerian charts in Kahlerian 
charts, and therefore induces a Kahler isomorphism. Moreover, each Kahler 
isomorphism is induced in such a way by a unitary operator, which is unique up to a 
phase factor. Indeed, let cp be a Kahler isomorphism of P(X), h, h' E X, llhll = ~ ~ h ' ~ ~  = 1, 
such that q ( [ h ] )  = [ h ' ] .  The map q h " ( P  0 (pi' is a unitary operator Uhh,:{h}L+{h '}L ,  
which extends uniquely to a unitary operator U :  X = { h } i O @ h  + X={h ' } 'O@h' ,  
such that Uh = h ' .  U implements cp as required, and a different choice of h, h '  changes 
U by a phase factor. We have therefore a bijection between the automorphism group 
of a(%) and the group of Kahler isomorphisms of P(%). For instance, under an 
automorphism of %'(E) the energy function (6) becomes R H ,  = ($IU'HU$) ($I$)-', 
while under the corresponding Kahler isomorphism, it becomes R ;I = 

Let us consider again the anti-Kahlerian atlas d. Kahler anti-isomorphisms of 
P(%) (which brings Kahlerian charts in anti-Kahlerian charts) are in bijection with 
the group % (%)/ - , where % @') is the group of anti-unitary operators on X, that 
is, the group %(g) of unitary operators on 2. The group %(X)/ - = %(g)/ - is 
the group of automorphisms of 93 (X) = 93 (g), 

We are now ready to give a reformulation, from the geometrical point of view, of 
Wigner's theorem. For an algebraic reformulation, see Schultz (1982). 

Wigner's theorem in its classical form says that a bijection of P(X) which preserves 
transition probabilities is implemented either by a unitary or by an anti-unitary 
operator on X, unique up to a phase factor. But, just up to the phase factor, unitary 
and anti-unitary operators on 2 correspond to Kahler isomorphisms and anti- 
isomorphisms of P(%) respectively. A Kahler isomorphism of P(X) therefore preser- 
ves transition probabilities and affine orientation, while a Kahler anti-isomorphism 
of P(%) (which corresponds to a Kahler isomorphism of IF'(%!) equipped with its 
canonical atlas d,%, = d,,J preserves transition probabilities and reverses affine 
orientation. We remark that only Kahler isomorphisms are holomorphic bijections 
of P(X) with the holomorphic structure given by dtZe,. 

Theorem 3 (Wigner). A bijection of PCX) which preserves transition probabilities is 
either a Kahler isomorphism or anti-isomorphism of $(Xi"). 

(U@IHU$). (U@lU$)-' = R H ' .  

We can therefore restate Wigner's theorem as follows: 
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